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CHAPTER 1

INTRODUCTION

Massively Parallel Processing (MPP) computers offer the prospect of significant

performance gains over conventional supercomputers, which are now approaching

hard physical speed limits inherent in their technology. However, the need for faster

computations continues to grow. As a consequence, massively parallel computers

are being developed as a possible solution. The Connection Machine-5 (CM-5) is

one such MPP computer, which may provide better performance than conventional

supercomputers and may replace the fastest conventional supercomputer in the

near future. In fact, the CM-5 computer, with maximum 16k nodes installed, is a

2 TFLOPS computer in theory.

Computational fluid dynamics (CFD) is one of the areas which requires super-

fast computational power because the problems typically involve a large number of

calculations. The massively parallel computers have the potential to become the

main computational tool for CFD; it may replace the conventional supercomputers

in the near future. Hu and Jackson [4], and Chriske and Boguez [2], have made the

performance study for a two dimensional source panel method calculation, and the

study shows that the parallel code achieved a high performance. The potential of

MPP computers is being realized. Computational Fluid Dynamics (CFD) is being

enhanced immensely by the advent of MPP computers. Various CFD problems are

being solved by MPP computers in a more efficient manner. Thus, the study of the



performance of MPP computers on CFD problems has become a very important

issue.

In the realm of Computational Fluid Dynamics, the finite difference method

(FDM) and the finite volume method (FVM) are major methods of solving incom-

pressible and compressible flows, including transonic flow problems. The FDM and

FVM for the Navier-Stokes equations, though successful, are expensive to imple-

ment. However, the Integral Equation Method(IEM) applied to the potential equa-

tion formulation for incompressible and some compressible flows, including transonic

flows, represents an efficient alternative to FDM and FVM.

The IEM, based on Green's theorem, represents the solution in terms of in-

tegrals over the computational domain and boundary of the domain. The IEM

computation for typical aerodynamics problems involves evaluating a large number

of integrals, which is expensive to evaluate on serial-architecture supercomputers.

In contrast, these integral computations may be done less expensively in a massively

parallel computing environment.Therefore, there is a need to study its performance.

The IEM for linearized subsonic and supersonic flow computations has been in

use since the 1960's and has become an indispensable tool in aerodynamic analysis

and design. A review of the method is given by Kandil and Yates [6]. Since the

1970's, several numerical schemes implementing the IEM for nonlinear compressible

including transonic flows have been developed by some investigators [5-6].

For example, Hu [5] developed a numerical scheme using the IEM in solving

the full-potential equation for three dimensional compressible including transonic

flows. The numerical scheme is implemented on the conventional supercomputer

Cray-YMP.

The objective of this work is to implement, including the necessary modica-

tions, the numerical scheme of the IEM developed by Hu [5] in a massively parallel



computing environment. A comparativestudy on the performanceof the parallel

code and the serial code for three dimensional calculations is made.

Chapter 2 presents the physical and mathematical foundation of the problem,

along with the integral equation solution and its associated numerical algorithm.

Chapter 3 discusses the CM-5 architecture, parallel CM-FORTRAN computer lan-

guage, and implementation of parallel computation of the IEM. The performance

study is made in Chapter 4. Finally, the concluding remarks on this investigation

are given in Chapter 5.



CHAPTER 2

MATHEMATICAL FORMULATION

2.1 The Physical Problem

The physical problem being studied is the flow around three dimensional aero-

dynamic configurations. Incompressible and compressible flows are considered. In

order to study flows, it is necessary to study the laws of conservation of mass, mo-

mentum and energy, which lead to the fundamental governing equations for fluid

flows. The following derivation of the fundamental governing equations are given

by Anderson [1]. The derivation of the full-potential equation is based on Hu [5]

but is modified to meet the specifications of the problem solved.

2.2 Fundamental Equations of Fluid Flows

There axe three fundamental equations for fluid flows, the continuity equation,

the momentum equation and the energy equation. Each equation has its physical

interpretation.

2.2.1 The Continuity Equation

The physical principle of the continuity equation can be stated that the mass



can be neither created nor destroyed. The principle is expressed mathematically as

-_ pdV + pip. dS = 0 (2.1)

where the first term is the time rate of increase of mass inside control volume, V;

the second term represents the flow across the boundary, S, of the control volume,

V ; IP is the flow field velocity vector, p the density and t the time. Applying the

divergence theorem, Equation (2.1) becomes

0.[?-/+ v. (pip)ldV= 0 (2.2)

For arbitrary control volume, V , Equation (2.2) implies that

Op
-_ + V" (piP) = 0 (2.3)

which is the continuity equation in differential equation form.

2.2.2 The Momentum Equation

The physical principle of the momentum equation is that the force equals time

rate of change of momentum. The equation in integral form is

-_-_j[v Pip dV + • = - j[s P de Fv (2.4)

where p is the pressure; dog is the normal vector of the surface elements, o fv pipdV

is the time rate of change of momentum contained at any instant inside the control

volume due to flow fluctuations. The net flow of momentum out of the control

volume through surface S is the summation of the above elemental contributions

and is expressed as fs(p¢, dog)_'. -fspdog is the pressure force acting on the

5



control volume, fv pJ_dV is the body force and F,_ is the viscous force. Applying

the divergence theorem to surface integral terms of Equation (2.4), the momentum

equation becomes

Ot + V" (p1717) + VP- PJ_ - j_]dV = 0 (2.5)

where jVvrepresents the viscous force term. Since the control volume V is arbitrarily

chosen, Equation (2.5) gives

Op'V

--_ + V" P I717 + VP- Pf_ - fv = 0 (2.6)

which is the momentum equation in differential equation form.

2.2.3 The Energy Equation

The physical principle of the energy equation is that energy can be neither

created nor destroyed; it can only change form. The energy equation is expressed

as

0 V 2 V 2

(2.7)

where l_ is work due to viscous effects. _)_ is due to viscous effects. 0 is the

volumetric rate of heat addition per unit mass. _)_ is the total rate of heat addition

to the control volume due to viscous effects, l_' is the total work done by viscous

effects on the control surface S. t is the time.

The partial differential form of Equation (2.7) is given by

V 2 V 2 .
O[p(e+-f-)+V.[p(e+--2-)V]=pO-V.(pf)+p(_.P)+O'+l]V' (2.8)

6



2.3 Full-Potential Equation

The Equations (2.3), (2.6) and (2.8) are combined to form the Navier-Stokes

equations in the computational fluid dynamics, although in the theoretical fluid me-

chanics, Equation (2.6) alone is called the Navier-Stokes equations. They represent

the most general governing equations for fluid flows. However, for some flows, there

are simplified governing equations. Flows in which vorticity is zero are known as

irrotational flows. Fluid elements of irrotational flow field have no angular velocity.

The mathematical relation representing irrotational flow is

Vxff=0

which means that the curl of velocity vector field l_ is zero.

(2.9) with the vector identity, V x Vq_ = 0, it is found that

(2.9)

Comparing Equation

(2.10)

This implies that for irrotational flows, there exists a scalar function q_, the velocity

potential. Inviscid flows are flows in which viscous effects are negligible. Com-

pressible flows as opposed to incompressible flows are flows in which the density p

varies.

For unsteady inviscid compressible flows with negligible body forces, the con-

tinuity and momentum equations, Equations (2.3) and (2.6) reduces to

Op
-_- + I_ • Vp + p V .I_ = 0 (2.11)

and

c3Ip 1

O---t-+ 17. Vl_ + - V P = 0 (2.12)
P

7



respectively.

Using the identity,

V 2

Y. vY = vZ-- v ×(v× 9) (2.13)

Equation (2.12) becomes

09 v 2 1
0---/-+ V(--_-) - 9 x (V x 9) + - V p = 0 (2.14)

P

For steady, irrotational flows, o = 0 and V x 1_ = 0. Equation (2.14) reduces

to

v 2 1
V(c-x-) + - VP =0 (2.15

Z P

Using the velocity potential, _, with

then Equation (2.15) becomes

v(vo) 2 1
+ - VP = 0 (2.16

2 p

Integrating Equation (2.16) with respect to space yields

(v+) _ f dp
--5--+ ]T =_ (2.17

For barotropic fluid, there is the relation

dp a 2p - n - 1 (2.18

where a is the speed of sound and t¢ is the gas specific heat ratio. If the fluid is at

rest at infinity, then it follows that

2
aoo

g - (2.19)



where subscript _ refers to the infinity condition. Substituting Equation (2.18)

and (2.19)into (2.17) yields

(VO)2 a 2 2
+ _ a_ (2.20)_-I _-I

Assuming that the flow is isentropic and the isentropic relation, which is an-

other form of the energy equation,

(2.21)

is used into Equation (2.20) to get

- --, (2.22)
P_

By defining the Mach number M_ as ratio of Vo¢ and a, Equation (2.22) takes the

form

_Pp_ = [1 (to - 1) __-_3 [ 12(V0)2]--: (2.23)

For steady, irrotational flows, the continuity equation, Equation (2.11), reduces

to

_O.Vp+pV.VO=0 (2.24)

which can be rewritten in the following form

1
V 2_ = -- V P" V ¢ (2.25)

P

After introducing the characteristic parameters of V_, p_ and the wing root chord

length c, Equations (2.25) and (2.23) take the dimensionless form as follows

V2(I ) = G (2.26)

with

1
G = -- V P" V¢ (2.27)

P



and

p = [1 (_; - 1)._/_(V_)2] _ _ (2.28)

Equation (2.26) along with Equations (2.27) and (2.28) is the fuU-potential equa-

tion for inviscid compressible flows. For transonic flows, Equation (2.26) along with

Equations (2.27) and (2.28) is a mixed elliptic-hyperbolic partial differential equa-

tion. It should be noted that equation (2.26) is written in the poisson's equation

form, where the compressibility, G, is recognized as an inhomogeniety instead of a

nonlinearity. In order to study the mixed nature, one may investigate the Transonic

Small Disturbance(TSD) equation, which is obtained from the full-potential equa-

tion under the small disturbance assumption. The TSD equation can be written

as

.2. ., 02 @ 02 q_ 02 •

[l-iv1 tx, y,z)l_+_+ Oz 2 -0 (2.29)

From Equation (2.29) when the local Math number, M(x,y,z) is larger than

one, the equation is a hyperbolic partial differential equation. When M(x, y, z) is

less than one, the equation is a elliptic partial differential equation.

2.4 Boundary Conditions

The boundary conditions are surface no-penetration condition, Kutta condi-

tion, infinity condition, and wake kinematic and dynamic conditions.

described as follows:

t . g=0 on

They are

(2.30)

/xcp Isp=o (2.31)

VO--o0 away from q(7v)=0 and w(_=0 (2.32)

10



17. ffw = 0 on w(r-') = 0 (2.33)

and

ACp = 0 on w(_ = 0 (2.34)

where ff_ is the unit normal vector of the wing surface, g(r-') = 0; Cp is the surface

pressure coefficient; the subscripts sp refers to the edges of separation; and w(r-) = 0

is wake surface(s). For nonlifting symmetric flow where the wake surface can be

neglected, the required boundary conditions are surface no-penetration and infinity

condition given by Equations (2.30) and (2.31), respectively.

2.5 Integral Equation Solution

By using the Green's theorem, the integral equation solution in terms of the

velocity field for nonlifting flows is given by

=

4r d 2 77,

1 ¢) _dd_dqd_

1
()

(2.35)

where I_o_ is the free-stream velocity; q is the surface source distribution; the sub-

script, S, refers to the shock surface; ds is the infinitesimal surface area; the vector

dis given by d= (x-_)[+(y- r/)f+ (z - _)k; and g'd is defined by _'d = d/l_-

It can be seen that the infinity condition is automatically satisfied by the integral

11



equation solution.

2.6 Discretization

To solve the problem using field-panel method, Equation (2.35) must be dis-

cretized. The discretization in terms of field-panels is as follows

LG NG

i=lk=l i,k -- edds(_'

+ _----__-_Gi,j,k/f fV, j, _--5_dd_dqd( (2.36)
i=1 j=l k=l , ,

MS NS

/L 1-+ -_EEqsj,k -_edds(_,rh_)
j=lk=l ,k

where the indices,/, j and k refer to the surface and field panels; LG x NG is the

total number of wing surface panels; LV x MV x NV is the total number of field

panels; and MS x NS is the total number of shock surface panels. The constantly

distributed surface and volume sources are used.

2.7 Numerical Scheme

2.7.1 Panel Method for Incompressible Flows

The standard panel method is used to solve the incompressible flow problems.

In Equation (2.36), G = 0 for incompressible flows, and hence qs =0. Equation

(2.36) reduces to

T2(x,y,z)= --
LGNG f_gg ]" _ddS(_,r],_)1EEq,,._ -_

47r i=1 k=l i,k
(2.37)

12



After applying the wing surfacezero-normal-velocity boundary condition at each

control point (CP) of all panels,

,2(x,y,z). = 0 (2.3s)

a system of equation is obtained,

[Al{q} = {B} (2.39)

where [A] is N x N aerodynamic influence coefficient matrix, and N = LG x NG;

{q} is a Nxl unknown vector matrix containing qj for j = 1 to N; and {B} is a N

x 1 known vector matrix which is contributed from 17_. The solution procedure

of the problem using source panel involves three major steps: Step 1 - evaluation

of integrals for N 2 times to construct matrices [A] and also {B}; Step 2 - solving

the resulting dense linear system of Equation (2.39); and Step 3 - post-processing

of aerodynamic calculations.

Step 1 involves evaluating a large number of integrals. The total number of

integrals can be very large for aerodynamic problems. It can be in the order of 10 s

if LG x NG = 100 x 100. An important feature of step 1 is that the calculation

for each (x, y, z) and each (_, r], _) can be performed simultaneously for all (x, y, z)

and all (_, r/, _). This feature of panel method calculation leads itself in a natural

way for processing data in a parallel computing environment.

2.7.2 Field Panel Method for Compressible Flows

The field Panel method is used to solve the problem. The scheme developed by

Hu [5] in serial FORTRAN code is inherently used in developing the parallel CM

FORTRAN version.

The solution procedure is as follows:

13



Step 1 - Standard PanelMethod calculations.

Step 2 - Computation of the Initial Value of the Compressibility: Unlike the

incompressiblecasewhere the density p is constant, and the compressibility, G, is

zero, G is updated by using an iterative method. A central difference scheme is

used to calculate the derivative of p.

Step 3 - Enforcing the Boundary Conditions: The boundary conditions are

enforced in order to develop the appropriate matrices, where the compressibility,

G, obtained in Step 2 and the source distribution obtained in Step 1 are used. The

solution gives qg distributions.

Step 4 - Calculation of the Surface Pressure Coefficients: Once G and the

source distribution q9 are obtained, they are used in Equation (2.36) to calculate the

velocity at each control point. The surface pressure coefficients are then calculated.

The pressure coefficient is defined by

2 p

Cp - nM_ (-po_ - 1) (2.40)

where p and po, are all dimensional quantities. By introducing the isentropic flow

relation,

P_P =(_21 _ (2.41/

and writing .2_ as the dimensionless density, p, Equation (2.41) becomes
poo

2

Cp - gM 2 (p" - 1) (2.42)

Equation (2.42) is used to compute pressure coefficients at each control point of the

wing surface.

14



Step 5 - Steps2-4 are repeateduntil convergence.

2.8 Significance of Computing In a Parallel Environment

The IEM computations for typical aerodynamics problems involves evaluating

a large number of integrals over the computational domain and the boundaries

of the domain as indicated in Equation (2.36). The computation of this large

number of integrals on serial-architecture supercomputers is very computationally

expensive. On the other hand, it is noticed that all these integral computations

can be computed simultaneously in a massively parallel processing environment.

Therefore, it is imperative to study the computational performance of the IEM on

a MPP environment. An overview of the MPP and CM Fortan is given in the

following chapter.

15



CHAPTER3

PARALLEL IMPLEMENTATION

3.1 Connection Machine - 5

The connection machine is a MPP computer that is the brainchild of W. Daniel

Hillis, Marvin L. Minsky and Scott E. Falman, collectively producing the first proto-

type in 1985 [3]. In MPP computers, many small processors are made to work simul-

taneously, each accompanied by small memory. Parallel processing allows memory

capacity and processing capacity to be utilized yielding high efficiency. Each proces-

sor is much less powerful and less expensive to produce than a typical conventional

supercomputer processor, but in tandem they can achieve an extremely high perfor-

mance which conventional supercomputers can not achieve [3]. Since each processor

is bearing down on the same problem there has to be a means by which they com-

municate. The user has the option to use the SIMD(Single Instruction Multiple

Data) mode of data parallel computing or the MIMD(Multiple Instruction Multi-

ple Data) mode of message passing computing. The present study of performance

uses the SIMD mode where the communication is solely controlled by the computer

implicitly as opposed to MIMD mode where the user explicitly controls necessary

communication.

The Connection Machine CM-5 system is a scalable distributed-memory mul-

16



tiprocessor system [8]. The architecture of the CM-5 is optimized for parallel pro-

cessingof large, complexproblems [8]. The systemis designedto operate on large

amounts of data. The major hardware elementsof the system include Front-End

computers to provide developing and execution environments and a parallel pro-

cessingunit, which consistsof multiple nodes, to execute parallel operations [8].

The basic computational unit is the compute node. Compute nodeswork in par-

allel. Each node has its own memory. The processingnodes are supervised by

a control processor;it broadcastsblocks of instructions to the parallel processing

nodesand then initiates execution. The CM-5 parallel processingnodesaredivided

into groups, known as partitions. Every control processorand parallel processing

node in the CM-5 is connectedto two scalableinterprocessorcommunication net-

works, designedto give low latency combinedwith high bandwidth in any possible

configuration a user may wish to apply to a problem [8].

Eachcompute node contains 1 spareprocessor,four vector units(vector length

= 16) with 32 Megabytes(MB) of memory. A theoretical peak performance is 128

MFLOPS per nodefor a total of 16GFLOPS no the 128 node CM-5 [8].

3.2 CM-Fortran

The software consists of CM-FORTRAN which is a high performance FOR-

TRAN language, the CMSSL (Connection Machine Scientific Software Library), a

debugging software package, Prism, and a host of others. The CM-FORTRAN lan-

guage is an implementation of FORTRAN-77 supplemented with array-processing

extensions from the standard FORTRAN-90 [9]. These array-processing features

map naturally onto SIMD data parallel architecture of the CM-5 system, since

the CM-FORTRAN allows array elements to be evaluated simultaneously. The

17



most important differencebetween CM-FORTRAN and standard FORTRAN is

the treatment of entire arrays asobjects, thus explicit indexing in CM-FORTRAN

is not always necessary.For example, it is not necessaryto write DO-LOOPS or

other suchcontrol constructs to havethe operation repeatedfor eachelementof an

array.

3.3 Parallel Implementation

A three dimensional, steady, incompressible and compressible, source field

panel method is converted to a parallel CM FORTRAN program. Before man-

ual conversion, the CMAX translator is used to partially convert some of the serial

FORTRAN code into parallel CM-FORTRAN code under the data parallel (SIMD)

programming mode. Since CMAX is relatively new and not very well developed yet

a lot of the conversions made by CMAX have to be fine tuned. Hence, most of the

conversion is done manually.

Prior to the description of the code conversion, it is necessary to describe some

properties of CM-FORTRAN. Arrays in CM FORTRAN come in the following two

forms, Front End(FE) arrays and Connection Machine(CM) arrays. Front-End Ar-

rays are for standard FORTRAN operations and are stored on the Partition Man-

ager and are called Front End (FE) arrays. CM arrays are for parallel FORTRAN

operations and are stored across the local memories of the processing nodes [9].

While using FE and CM arrays one should avoid using an array as both an array

object and a subscripted array. An array used as an array object always resides

on the parallel processing nodes and hence has a CM home. If a CM array is used

as subscripted array (FORTRAN), the system moves the CM array to the FE, one

element at a time, to perform the sequential operations. This transfer of CM arrays

18



to FE arraysdegradesthe performance[9]. Intrinsic functions and other attributes

of CM-FORTRAN are listed alongwith examplesin the following sections.

3.3.1 Parallelization of Incompressible Flow Case

Step 1 of the incompressiblesourcepanelmethod is codedin subroutine VEL-

WING.f, which contructs the linear densematrices [A] and {B}. The serial FOR-

TRAN subroutine VELWING.f is convertedto fully parallelized code. The original

subroutine VELWING.f is partially listed in Figure la and its parallel counterpart

VELWING.fcm in Figure lb.

In subroutine VELWING.f there are two doubly nestedDO-LOOPS, nestedIF

statements and a call to subroutine VWS.f, which is called from the inner doubly

nested DO-LOOPS. Parallel WHERE assignmentsare implemented to replace the

serial FORTRAN IF command. Instead of calling subroutine VWS.f, as in the

serial version, VELWING.fcm replacesthe call to VWS.f with a fully parMlelized

version of the VWS.f subroutine. All four DO-LOOPS are efficiently replaced by

the intrinsic SPREAD functions. The FORALL command is used to manipulate

the four dimensional arrays developedby implementing the SPREAD function. A

brief overviewof eachCM-5 attributes and a few examplesare given below.

3.3.1.1 Attributes of the SPREAD Function

The SPREAD function is a transformational function. It broadcasts copies

of a source array(or scalar) along a dimension (as in forming a book from copies

of singlepage), yielding an array of rank one greater than the source,with values

replicated from the source [9].

Essentially the spread function is used to replace the nested DO-LOOPS by

transforming all arrays within the two outer loops and the two inner loops into

four dimensional arrays. For the smaller problem tested where LGxNG = 24x12,
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DO-LOOP 1 goesfrom 1 to 24 and DO-LOOP 2 goesfrom 1 to 12. DO-LOOP 3

goesfrom 1 to 24 and DO-LOOP 4 goesfrom 1 to 6. The arrays formulated in the

outer loops arecopiedalongthe third and fourth dimension. The arrays formulated

in the inner loops are copied along the first dimension. The arrays are spreadin

this fashion to ensurecorrespondence.That is to say when arrays formulated in

the outer loops 1 and 2 are spreadto four dimensional arrays, and when arrays

formulated within the inner loops 3 and 4 which are spread to four dimensional

arrays,computations involving arraysoriginating from the outer loops and the inner

loopswill correspond correctly. Now all computations can be done simultaneously in

four dimensions instead of serially by using time consuming nested DO-LOOPS. To

see how the SPREAD function is applied, one may look at array xcm4(24, 12, 24, 6)

in Figure lb. In the original code listed in Figure la, it is calculated serially within

the DO-LOOPS 1 and 2 as scalar xc. In the parallel version xc(nr, nc) is renamed

xcra(nr, nc). Its elements are calculated simultaneously by using the feature of

CM-FORTRAN that simply lets you calculate the array instanteously. Hence, using

xcm(: nr,: nc) .... will compute and store the all value of xcm(1, 1), ..., xcrn(24, 12)

in array xcm simultaneously.

Since xc is located within the DO-LOOPS 1 and 2, but not the two inner

DO- LOOPS 3 and 4 of VELWING.f, its values in the parallel version are initially

located in the parallel array xcm(24, 12). Then they are copied along the third

dimension via the SPREAD function. Thus, xcm3 contains 24 copies of the values

in xcm, where xcm3 is the three dimensional array xcm3(24, 12,24). Likewise,

xcm3 is copied along the fourth dimension. It contains 6 copies of the values of

xcm3. xcm4 is the four dimensional array xcm4(24, 12, 24, 6).

The scalar xf calculated serially within the inner most DO-LOOPS 11 and

12 of the origin version can be calculated simultaneously in the parallel version.
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In the parallel version it is initially the array x fro(24, 6). Then via spreading it

along the 1st dimension and making 12 copies of xfm along the first dimension,

it becomes xfrn3 which stores the values in x fro3(12,24,6). Then 24 copies of

x fro3 is spread along the first dimension of x fro4 yielding x fro4(24, 12, 24, 6). Now

these four dimensional arrays are manipulated as complete objects instead of being

manipulated element by element.

3.3.1.2 Attributes of The FORALL Statement

The FORALL statement is an elemental array assignment statement used

to specify an array asignment in terms of array elements of array sections. The

FORALL statement effectively describes a collection of assignments to be executed

elementally [9].

The FORALL statement used in VELWING.fcm and also VELWING2.fem

predominantly calculates in parallel the arrays and scalars that in VWS.f subroutine.

It assigns elements to the necessary arrays. For example,

zl(is,j.s,ir, jr) where, is = 1 to 24, js = 1 to 12, ir = 1 to 24 and jr = 1 to 6.

3.3.1.3 Attributes of The WHERE Statement

The WHERE construct qualifies the evaluation of expressions and assignments

of values in several array assignment statements [9]. It is very similar to the well

known IF construct of standard FORTRAN. Unlike the IF statement it requires

everything within the WHERE construct to be an array of the same dimension of

the masked expression. For example referring to Figure 3b the WHERE construct
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is

WHERE(distm4.1t.farfd)

WHERE(distm4.1t.0.0001)

ELSEWHERE

ENDWHERE

ENDWHERE.

where distm4 is the array used in the mask statements. Since it is a four

dimensional array all array assignments and evaluations within the expression have

to be the same dimension of array distrn4(24, 12, 24, 6).

All calculations needed to produce the desired results of subroutine VWS.f are

placed in the parallel routines before the WHERE construct. The parallel version

of VELWING.f drastically out-performs the original serial FORTRAN code. The

results are discussed in Chapter 4.

3.3.1.4 Attributes of the Parallel Matrix System Solver

The CMSSL is a rapidly growing set of numerical routines that support com-

putational applications while exploiting the massive parallelism of the Connection

Machine system [10]. It includes dense and sparse matrix operations; routines for

solving dense, banded, and sparse linear systems; eigensystem analysis routines[10].

Efficient use of the Connection Machine architecture is accomplished through a

careful choice of data layout, efficient implementation of interprocessor data mo-
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tion, and careful management of the local memory hierarchy and data paths in

each processor [10].

The serial Gauss elimination routine is replaced by a call of subroutine Gauss

elimination(LU decomposition) with partial pivoting. The system to be solved

consists of dense CM array [A] and CM array {B}. The CMSSL Gauss elimination

routine permits the change of the blocking factor. The result of the performance

as it relates to the change in the blocking factor is investigated and the results are

presented in Chapter 4.

3.3.1.5 Parallelization of Post-Processing Calculations

Subroutine PRESS.f is used to calculate the pressure distribution over the

surface of the wing and it is listed in Figure 2a. The parallel version is listed in

Figure 2b. It is partially parallelized and this degrades the performance. Most of

the subroutine is written in parallel, but most of the parallel computations occur

inside of nested DO-LOOPS which are not parallel. This effects the performance

immensely.

3.3.2 Parallelization of Compressible Flow Case

The serial FORTRAN program is based on the field panel method. The method

is modified from the standard panel method so that the compressibility is accounted

for by using an iterative scheme in which the density, and therefore G is updated

during each iteration.

Subroutine GVICAL.f calculates the volume integrals, which is listed in Figure

3a. It consists of six nested DO-LOOPS. The inner DO-LOOPS, 11, 12, 13, each

has conditional IF statements used to determine values for variables X, Y, Z. The
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inner DO-LOOPS does the Near-field calculations. The outer nested three DO-

LOOPS 6,7,8are usedto fix a receiverpoint at the lower right downstream corner

of the control volume V. Also the surfaceand field velocities are savedfor usage

throughout the code.

GVICAL3.fcm is a fully parallelized version of GVICAL.f. It is listed in

figure 3b. All calculation done in the DO-LOOPS are converted to FORALL

statements or parallel array assignments. The IF statements assigning values to

X, Y, Z, within the DO-LOOPS 11, 12, and 13 are replaced by array assignments

x100(20, 16, 18),x101(20, 16, 18), and

ylOO(20,16,18),glOl(20,16,18), and z100(20,16,18), z101(20,16,18).

Other calculations within DO-LOOPS 11, 12, and 13 of GVICAL.f are replaced

by parallel array assignment statements. The IF statement using the masks

abs(xf f), abs(yf f) and

abs(zff) is replaced by nested WHERE statements with arrays

xf flO0, vf flO0, and zf flO0 replacing

x f f , y f f , and z f f respectively.

Scalars xs, ys, and zs in subroutine GVICAL.f are replaced by arrays

xsl00(20, 16, 18), ysl00(20, 16, 18) and

zsl00(20, 16, 18), respectively, which are all formulated by using the FORALL

command. Although the code is expanded for 82 lines of FORTRAN code to 388

lines of CM FORTRAN code, the parallel version is the best version for application
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on MPP computers. Also it out-performs the original serial code.

Subroutine VELFDG.f listed in Figure 4a takes the summation of all of the

integrals evaluated by subroutine GVICAL.f. Subroutine VELFDG.f is converted to

the fully parallel version VELFDG.fcm, which is listed in Figure 4b. This subroutine

accounts from the effect of compressibility. DO-LOOPS 6, 7, and 8 of subroutine

VELFDG.f are replaced by FORALL statements in subroutine VELFDG.fcm.

25



CHAPTER 4

PERFORMANCE ANALYSIS

Studying each phase of the CM-FORTRAN version of the source field panel

method shows that the CM-5 has its advantages and disadvantages. The serial

and parallel codes for the standard panel method and the field-panel method axe

executed on Cray-YMP with a single processor and CM-5 with 32, 64 and 128

nodes, respectively. The performance on Cray-YMP supercomputer with a single

processor provides the basis for comparison. The computational performance is

obtained using Cray-YMP's PERFTRACE utility. The CPU execution (CM-busy)

time on the CM-5 is obtained via CM TIMER routines.

Identical pressure distribution results are obtained using both serial FORTRAN

code and parallel CM-FORTRAN code for the incompressible flow case. This part

of results is published by Logan and Hu [7]. Results of the parallel code for the

compressible flow case are different from the results accrued on the Cray-YMP.

Performance of the code using 1 iteration and 6 iterations is presented for the

compressible flow case.

4.1 Performance of Incompressible Flow Computation

Results relating to how CM-5 performance compares to the Cray-YMP are

presented in Tables 1 through 4. Graphs 1 thru 4 are developed from results listed
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in these corresponding tables. Partially paralMized code as opposed to fully paral-

lelized code has a significant effect on performance. This effect and other pertinent

details are presented below.

Tables 1 thru 3 gives CPU time required for each step of the incompressible

flow source panel method as mentioned. It lists results obtained for the smaller

problem where N = 24×12, 288 source panels and the larger problem where N =

48x24, 1152 source panels.

Table 1 lists CPU time used to construct the matrices. This segment of code is

fully parallelized. It is found that CM-5 performs better than Cray-YMP on both

smaller and larger problems. Scaling the CM-5 up to 64 nodes and then to 128

nodes results in even faster CPU time. Comparing the Cray-YMP to the CM-5 as

the problem size increases, it is seen that the Cray-YMP requires approximately

twenty times as much CPU time to complete the larger problem than it requires to

complete the smaller problem. However, CM-5 requires at most ten times as much

CPU time to complete the larger problem as it requires to complete the smaller

one. Since the CPU time decreases considerably as the number of nodes increases,

this implies that the code is not only fully parallelized but it is also efficiently

implemented on the parallel processing unit.

Table 2 lists CPU time used to solve the matrices. Gaussian elimination is used

to solve the matrices on the conventional Cray-YMP. A CM-FORTRAN Gaussian

elimination library routine is used to solve the matrices on the CM-5. Cray-YMP

performs faster than CM-5 for the smaller problem requiring less than half the time

it takes CM-5 to solve the problem using 128 nodes. However, CM-5 performs

faster than Cray-YMP for the larger problem. Also as the problem size increases
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Cray-YMP requires fifty-eight times as much CPU time to solve the larger problem

than it does to solve the smaller problem. However, CM-5 requires at most six

times as much CPU time to solve the larger problem than it does to solve the

smaller problem. CPU time does not consistly decrease as the number of nodes

used increases. This may be due to CM-5 communication overhead.

Table 3 lists CPU time used for post-processing. This part of the

CM-FORTRAN code is partially parallelized. Partially parallelizing the code has

a significant effect on the performance of CM-5. Thus, Cray-YMP performs faster

than CM-5 for the smaller and larger problems. It completes the task in approx-

imately one-tenth the time it takes CM-5 to complete the task. However, as the

problem size increases Cray-YMP requires approximately seventeen times as much

CPU time to solve the larger problem than it does to solve the smaller problem.

CM-5 requires close to four and one-half times as nmch CPU time to solve the larger

problem than it does to complete the smaller problem.

Table 4 lists total CPU time required to solve the incompressible flow part via

the source panel method. Cray-YMP performs faster than CM-5 on the smaller

problem. It requires close to one-third times the CPU time it takes CM-5 to solve

the smaller problem. CM-5 performance may be attributed to the fact that some

of the code is partially parallelized. Its performance may also be attributed to

communication overhead. However, CM-5 outperforms Cray-YMP on the larger

problem. Cray-YMP requires thirty times as much CPU time to solve the larger

problem than the smaller problem, whereas CM-5 only requires five and one-third

times as much CPU time to solve the larger problem than the smaller problem.

Overall, CM-5 outperforms Cray-YMP in implementing the source panel method
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on incompressibleflow problems.

4.2 Performance of Compressible Flow Computations

Results for the compressible flow case obtained from the field panel method

are obtained. The computational results are not identical to the results obtained

on the Cray-YMP, and some investigations are being made. The performance of

the CM-5 CM-FORTRAN version of the code is compared with the Cray-YMP

serial FORTRAN version. The code is executed using 1 iteration and again using

6 iterations. The problem sizes increases from N = 24x 12, 288 source panels to N

= 48x24, 1152 source panels. The results are listed in Tables 5 and 6. Graphs 5

and 6 re-represents results listed in Table 6.

Table 5 lists CPU time for evaluating volume integrals. CM-5 outperforms

Cray-YMP in completing this task. The CM-5 subroutine that completes this task

is fully parallelized. Also as the number of nodes increases CPU time consistently

decreases by a considerable amount. The performance of Cray-YMP diminishes on

the larger problem. However, CM-5 attains the same CPU time it attains for the

larger problem as it does for the smaller problem. Overall CM-5 outperforms Cray-

YMP on both problems. More importantly, it does not require additional CPU

time to solve the larger problem like Cray-YMP does. CM-5 good performance

can be attributed to the fact that the code is fully parallelized and it is efficiently

implemented on the parallel processing unit.

Table 6 lists total CPU time for 6 iterations. Cray-YMP performs better than

CM-5 on both the smaller and larger problem. This can be attributed to the fact

that the CM-5 version uses subroutines that are partially parallelized. This causes

communication overhead to be very high. However, it is noticed that as the problem
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size increasesCray-YMP, CPU time increasesby a factor of four and four-fifths,

whereasCM-5 CPU time only increasesby a factor of one and one-third. This

implies that CM-5 may be the best choicefor large scaleproblems,since CPU time

increasesby a small margin comparedto Cray-YMP.
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CHAPTER 5

CONCLUDING REMARKS

The study of an integral equationmethod for a threedimensionalaerodynamics

problem is made in a massively parallel processing(MPP) environment. Serial

FORTRAN codeis convertedinto parallel CM-FORTRAN codeand a comparative

study is made to determine how well the CM-5 MPP computer performs when

compared to the conventionalCray-YMP supercomputer. Since CM-5 is intended

for useon large scaleproblems, two different problem sizesare tested to seehow

the sizeof the problem effectsthe performance.

From this investigation, the following concluding remarks can be made: (1)

Whenever the parallel codeis fully parallelized, CM-5 out-performs Cray-YMP; (2)

For the small problem, a partially parallel code is not approriate for CM-5; and (3)

When the size of the problem increases, the performance of CM-5 increases. For

further study, it is suggested that code should be fully parallelized in all subroutines

in order to achieve an overall high performance in a MPP environment.
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+

+

12 CONTINUE

ii CONTINUE

2 CONTINUE

1 CONTINUE

RETURN

END

SUBROUTINE VELWING(IVELCT,IWG,IG,JG,KG)

COMMON/BLK01/X(25,13),Y(25,13),Z(25,13)

oeeoee

DO 1 JS=I,NC
JSI=JS+I

DO 2 IS=I,NR
ISI=IS+I

XI=X (IS, JS)

oeaooe

XC=(XI+X2+X3+X4)/4.0

oeoeee

DO ii JR=I,NC/2

JRI=JR+I

DO 12 IR=I,NR

ooooeo

XF=0.25* (X (IR, JR1) +X (IRI, JR) +X (IR, JR) +X (IRI, JR1) )

eooooe

DX=XF-XC

eeoooo

DIST=SQRT(DX*DX+DY*DY+DZ*DZ)

IF(DIST.LT.FARFD) THEN

IF(DIST.LT.0.0001) THEN

UC=0.5*UNX (IS, JS)

VC=0.5*UNY (IS, JS)

WC=0.5*UNZ (IS, JS)
ELSE

CALL VWS(Xl,X2,Zl,Z3,YI,XF,YF,ZF, IS,JS,UC,VC,WC)
END IF

ELSE

AREAXZ=ABS ((X2-Xl) * (Z3-ZI))

XYN=UNX (IS, JS)/UNY (IS, JS)

ZYN=UNZ (IS, JS)/UNY (IS, JS)

FACXZS=SQRT(I.0+XYN*XYN+ZYN*ZYN)

AREAS=FACXZS*AREAXZ

CONSTFF=OPI4*AREAS/(DIST*DIST*DIST)

UC=CONSTFF*DX

VC=CONSTFF*DY

WC=CONSTFF*DZ

END IF

eeeeee

NBA=(JS-I)*NR+IS

A(KEQ,NBA)=A(KEQ,NBA)-(UC*UNX(IR,JR)

+VC*UNY(IR,JR)

+WC*UNZ(IR,JR))

Figure la. Serial Version - Constructing [A].
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SUBROUTINEvelwing(ivelct,iwg,ig,jg,kg)
include '/usr/cm/include/cm/CMF_defs.h"
COMMON/BLK01/X(25,13),Y(25,13),Z(25,13)
oooe.e

real unxm3(24,12,24),vnxm3(24,12,24),wnxm3(24,12,24)

eoooeo

unxm3 = spread(unx(:nr,:nc),dim=3,ncopies=24)

oeoooe

xcm3 = spread(xcm,dim=3,ncopies=24)

ee.ooo

xcm4 =spread(xcm3,dim=4,ncopies=6)

ooeooo

xfm3 =

oeooee

xfm4 =

ee.eoe

dxm4 =

oooeee

where

spread(xfm,dim=l,ncopies=12)

spread(xfm3,dim=l,ncopies=24)

xfm4 -xcm4

= sqrt(dxm4*dxm4+dym4*dym4+dzm4*dzm4)

(distm4. it. farfd)

where (distm4 .LT. 0.0001)

ucm4 = 0.5 * unxm4

eoeooe

elsewhere

xynm4 = unxm4/vnxm4

zynm4 = wnxm4/vnxm4

facxzsm4 = sqrt(l.0 + xynm4 * xynm4 + zynm4 * zynm4)
ddxm4 = ddxm4

ddzm4 = ddzm4

fac4 = opi4*facxzsm4*abs(ddxm4*ddzm4)/6.0
vwx4 = ffxll+ffx21+ffx31+ffx41+ .....

+ ffx44+ffx15+ffx25+ffx35+ffx45

eeeoe6

ucm4 = vwx4*fac4

ooeeeo

endwhere

elsewhere

zynm4 = wnxm4/vnxm4

facxzsm4 = sqrt(l+xynm4*xynm4 + zynm4*zynm4)

contm4 = opi4*areasm4/(distm4*distm4*distm4)

vcm4 = contm4*dym4
endwhere

forall (jr=l:nc/2,ir=l:nr,js=l:nc,is=l:nr)

& a(ir+(jr-1)*nr,is+(js-l)*nr) = a(ir+(jr-1)*nr,is+(js-l)*nr)

& -((ucm4(is,js,ir,jr)

& *unxd4(is,js,ir,jr))+

& (vcm4 (is, js, ir, jr) *vnxd4 (is, js, ir, jr) )+ (wcm4 (is, js, ir, jr)

& *wnxd4(is,js,ir,jr)))
return

end

Figure lb. CM Parallel Version - Constructing [A].
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SUBROUTINEPRESS(ITER, ICS,INC)
DIMENSION CPU(24,12,40)

COMMON/BLK01/X (25,13) ,Y (25,13) ,Z (25,13)

oooeml

DO 1 JR=I,NC/2

JRI=JR+I

DO 2 IR=(IUP-I)*NR/2+I,IUP*NR/2
IRI=IR+I

XF=0.25* (X (IR, JR1) +X (IRI, JR) +X (IR, JR) +X (IRI, JR1) )

oooooo

CALL VELWING(I,2,1,1,1)

OMTRX=BETAR*(ZF-ZP)-ALFAR*(YF-YP)

oooooo

UTRMS=EOX*HAM+OMTRX

.eooee

IF(INC.EQ.0) THEN

UR=VCX-UTRMS

oooooo

UVWR2=UR*UR+VR*VR+WR*WR

CPU(IR,JR, ITER)=I.0-UVWR2/HAM2

ELSE

CALL VELFDG(ITER, ICALREC,IR,JR,I,XF,YF,ZF,

UTT,VTT,WTT)
UR=VCX+UTT-UTRMS

ioeeoe

UVWR2=UR*UR+VR*VR+WR*WR

UVWTRM2=UTRMS*UTRMS+VTRMS*VTRMS+WTRMS*WTRMS

,oooo,

RHO=(I.0+0.5*GMI*(-UVWR2+UVWTRM2-2.0*DPHIJR))

** (i. 0/GMI)

CPU (IR, JR, ITER) =2.0/GAMA/HAM2* (RHO**GAMA-I. 0)

END IF

UVWR=SQRT (UVWR2)

HAML=UVWR/(RHO** (0.5*GMI))

END IF

2 CONTINUE

1 CONTINUE

RETURN

END

Figure 2a. Serial Version Post-processing.
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SUBROUTINEpress(iter,ics,inc)
DIMENSION CPU(24,12,40)

integer aaa,bbb,ccc

COMMON/BLK01/X (25,13) ,Y (25,13) ,Z (25,13)

do jr = 1 , nc / 2

jrl = jr + 1

do ir = nr/2+l,nr

irl = ir + 1

xf = 0.25 * (x(ir,jrl) + x(irl,jr) + x(ir,jr) +

& x(irl, jrl) )

..of.,

call velwing2(ccc,bbb,ccc,ccc,ccc)

omtrx = betar * (zf - zp) - alfar * (yf - yp)

ooo.,,

utrms = e0x * ham + omtrx

.coo.,

if (inc.eq.0) then
ur = vcx - utrms

ooo.oo

uvwr2 = ur * ur + vr * vr + wr * wr

cpu(ir,jr,iter) = 1.0 - uvwr2 / ham2
else

call velfdg(iter,icalrec,ir,jr,l,xf,yf,zf,

& utt,vtt,wtt)
ur = vcx + utt - utrms

..oo..

uvwr2 = ur * ur + vr * vr + wr * wr

uvwtrm2 = utrms * utrms + vtrms * vtrms +

& wtrms * wtrms

rho = (i.0 + 0.5 * gml * (-uvwr2 + uvwtrm2 - 2.0

& * dphijr)) ** (i.0 / gml)

cpu(ir,jr,iter) = 2.0 / gama / ham2 * (rho ** gama

& - 1.0)

endif

IF (.NOT.inc .EQ. 0) THEN

uvwr = sqrt (uvwr2)

haml = uvwr / (rho ** (0.5 * gml))
ENDIF

ENDDO

ENDDO

RETURN

END

Figure 2b. CM Parallel Version - Post-processing.
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SUBROUTINEGVICAL(IFORS,XRE,YRE,ZRE)
COMMON/VELPG/UPG(20,16,18),VPG(20,16,18),WPG(20,16,18)
.eteoo

IF(IFORS.EQ.0) THEN

XRE=XA-0.5*DX

oooooo

END IF

DO 6 J=I,NY

DO 7 K=I,NZ

DO 8 I=I,NX

XS=XB+ (FLOAT (I ) -0.5) *DX

oeeeoe

XFF=XRE-XS

......

DIST=SQRT(XFF*XFF+YFF*YFF+ZFF*ZFF)

IF(DIST.GE.FARFD) GOTO i0

IF(ABS(XFF).LT.(0.5*DX).AND.ABS(YFF).LT.(0.5*DY)

+.AND.ABS(ZFF) .LT. (0.5*DZ)) THEN

PDX=0.51*DX

ELSE

PDX=0.0

END IF

DO ii IS=I,2

eeeoo.

DO 12 JS=I,2

..eoo.

DO 13 KS=I,2

...ooo

X2=X*X

...oe.

SQU=SQRT(Y2/X2)

i.eoo.

ATYZ=ATAN2(Z*SQU,RS)

....oo

UU(IS,JS,KS)=Y/SQU*ATYZ-0.5*(Y*RSZ+Z*RSY)

oeoooo

13 CONTINUE

12 CONTINUE

ii CONTINUE

UT =- (UU(2,2,2) +UU (2, i, i) +UU (I, 2, i) +UU (i, i, 2)

+ -UU(2,2, i) -UU(2, i, 2) -UU(I, 2,2) -UU(I, i, i) ) *OPI4

i..e..

GOTO 14

i0 VD3=VOL/(DIST*DIST*DIST)

UT=OPI4*XFF*VD3

.o.o..

8 CONTINUE

7 CONTINUE

6 CONTINUE

RETURN

END

Figure 3a. Serial Version - Calculating Volume Integrals.
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SUBROUTINEgvical3(ifors,xre,yre,zre)
COMMON/VELPG/UPG(20,16,18) ,VPG(20,16,18) ,WPG(20,16,18)
oeeeeo

real utl(20,16,18),vtl(20,16,18),wtl(20,16,18)

....eo

save

if (ifors

xre = xa

eoeeeo

endif

.eeeee

.EQ. 0) then
- 0.5 * dx

zffl00(:nx,:ny,:nz) = zre-zsl00(:nx,:ny,:nz)

dist = sqrt(xffl00*xffl00+yffl00*yffl00+zffl00*zffl00)

where(dist.lt.farfd)

where (abs(xffl00(:nx,:ny,:nz)).it.(0.5*dx))

where (abs(yffl00(:nx,:ny,:nz)).it.(0.5*dy))

where (abs(zffl00(:nx,:ny,:nz)).it.(0.5*dz))

pdxl00(:nx,:ny,:nz) = 0.51*dx

elsewhere

pdxl00(:nx,:ny,:nz) = 0.0

eoeeoe

endwhere

xl00(:nx,:ny,:nz) = xre - pdxl00(:nx,:ny,:nz)

&-(xsl00(:nx,:ny,:nz)-0.5*dx)

...lee

squlll(:nx,:ny,:nz)=sqrt((yl00(:nx,:ny,:nz) *

& yl00(:nx,:ny,:nz))

&/(xlO0(:nx,:ny,:nz)*xl00(:nx,:ny,:nz)))

oeoeee

rslll(:nx,:ny,:nz)=sqrt(xl00(:nx,:ny,:nz) *

& xl00(:nx,:ny,:nz)

eeooee

atyzlll(:nx,:ny,:nz)=atan2(zl00(:nx,:ny,:nz) *

& squlll(:nx, :ny, :nz) ,

oo.oeeoee

&rslll(:nx,:ny,:nz))

eoeeee

uulll(:nx,:ny,:nz)=yl00(:nx,:ny,:nz)/

& squlll(:nx,:ny,:nz)

&*atyzlll(:nx,:ny,:nz)-0.5*(yl00(:nx,:ny,:nz)*

eeeooe

where (dist(:nx,:ny,:nz).It.farfd)

utl(:nx,:ny,:nz)=-(uu222(:nx,:ny,:nz)+uu211(:nx,:ny,:nz)

eeeooo

elsewhere

vd3(:nx, :ny, :nz) = vol/(dist(:nx, :ny, :nz)*dist(:nx, :ny, :nz)*

& dist(:nx,:ny,:nz))

endwhere

eoeeoo

RETURN

END

Figure 3b CM Parallel Version - Calculating Volume Integrals.
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SUBROUTINEVELFDG(ITER, ICALREC,IR,JR,KR,XFP,YFP,ZFP,
& UTT,VTT,WTT)

COMMON/BLK01/XW(25,13) ,YW(25,13) , ZW(25,13)
ooe...

IF(ICALREC.EQ.I) THEN

CALL GVICAL(I,XFP,YFP,ZFP)

oooo..

DO 7 JS=I,NY

DO 7 KS=I,NZ

DO 7 IS=I,NX

UTT=UTT+SUPG(IS,JS,KS)*G(IS,JS,KS)*RATIO

..oooo

7 CONTINUE

END IF

IF(ICALREC.EQ.2) THEN

eeeooo

DO 6 JS=I,NY

DO 6 KS=I,NZ

DO 6 IS=I,NX

UTT=UTT+SU*G(IS,JS,KS)*RATIO

eooooo

6 CONTINUE

END IF

IF(ICALREC.EQ.0) THEN

eeeee.

ID=NX-IR

oeooeo

DO 8 JS=I,NY

DO 8 KS=I,NZ

DO 8 IS=I,NX

IF (IS.LE. IR) THEN

I=IS+ID

SIGI=I.0

ELSE

IRSD=IS-IR

I=IR-IRSD+ID

SIGI=-I.0

END IF

ooeooo

UTT=UTT+SIGI*UPG(I,J,K)*G(IS,JS,KS)*RATIO

leeooo

8 CONTINUE

END IF

RETURN

END

Figure 4a. Serial Version - Summing the Volume
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SUBROUTINEvelfdg(iter,icalrec,ir,jr,kr,xfp,yfp,zfp,utt,
& vtt,wtt)

COMMON/BLK01/XW(25,13),YW(25,13),ZW(25,13)

* g(:nx,:ny,:nz) )

eeo..o

real dis31(ny,nz),dsl(ny,nz)

oeeeee

IF (icalrec .EQ. i) THEN

CALL gvical3(l,xfp,yfp,zfp)

eoeeee

utt = utt + sum(supg(:nx,:ny,:nz)

eooooe

END IF

IF (icalrec .EQ. 2) THEN

eoeeeo

utt = utt+ sum(sul00(:nx,:ny,:nz)*g(:nx,:ny,:nz))

eooo..

ENDIF

IF (icalrec .EQ. 0) THEN

eeoooo

forall(is=l:ir,js=l:ny,ks=l:nz)

& im2 (is, js,ks) = is+idm2 (is, js,ks)

forall(is=l:ir,js=l:ny,ks=l:nz)

& sigi(is, js,ks) =i. 0

forall(is=ir+l:nx,js=l:ny,ks=l:nz)

& im2(is,js,ks)=ir-is+ir+idm2(is,js,ks)

forall(is=ir+l:nx,js=l:ny,ks=l:nz)

& sigi(is,js,ks) = -i.0

eo oeeoeeoo

forall(is=l:nx,js=l:ny,ks=l:kr)

& km2(is,js,ks)= ks+kdm2(is,js,ks)

forall(is=l:nx,js=l:ny,ks=l:kr)

& sigk(is,js,ks)= 1.0

forall(is=l:nx,js=l:ny,ks=kr+l:nz)

& km2(is,js,ks) = kr-ks+kr+kdm2(is,js,ks)

forall(is=l:nx,js=l:ny,ks=kr+l:nz)

& sigk(is,js,ks)= -I.0

forall(is=l:nx,js=l:ny,ks=l:nz)

& upg3(is,js,ks)= upg(im2(is,js,ks),jm2(is,js,ks),

& km2 (is, js,ks) )

forall(is=l:nx,js=l:ny,ks=l:nz)

& vpg3(is,js,ks)=vpg(im2(is,js,ks),jm2(is,js,ks),

& km2 (is, js,ks) )

forall(is=l:nx,js=l:ny,ks=l:nz)

& wpg3 (is, js,ks) = wpg(im2 (is, js,ks) ,jm2 (is, js,ks) ,

& km2 (is, js,ks) )

utt=utt+sum(sigi(:nx,:ny,:nz)*upg3(:nx,:ny,:nz)*

& g(:nx,:ny,:nz))

oeee

ENDIF

RETURN

END

Figure 4b. CM Parallel Version-Summing the Volume Integrals.
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Table 1. CPU time in seconds for constructing matrices.

size, N=

Cray-YMP

3z-noae UMb

zuu(=z4xl z)

0.44

O._4

1IbZ(=4_X24)

8.25

2.34

64-node CM5 0.17 1.20

128-node CM5 0.12 0.65

Table 2. CPU time in seconds for Gaussian elimination.

size, N=

Cray-YMP

32-node CM5

64-node CM5

128-node CM5

288(=24x12)

0.58

1.43

2,11

1.65

1152(=48x24)

33.85

R R7

7.05

7.66
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Table3. CPUtime in seconds for post processing.

size, N=

Cray-YMP

;_z-noae UMb

:_(=:,'4Xl _'_

0.24

2.18

11b:)(:41:::lXZ4}

4.30

9.45

64-node CM5 2.21 9.61

128-node CM5 2.18 9.61

Table 4. Total CPU time in seconds for incompressible flow.

size, N=

Cray-YMP

32-node CM5

288(=24xl 2)

1.33

3.86

64-node CM5 4.53

128-node CM5 4.00

1152 (=48x24)

46.60

9(3 RR

18.0t

18.08
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Table5.CPUtimeinsecondsfor evaluatingvolumeintegrals.

size, N=

Cray-YMP

;_z-noae UMb

64-node CM5

128-node CM5

2_I:::I(=Z4X1 2}

1.48

0.11

0.07

0.04

1 I bZ(_=4UX2_4}

5.60

0.07

0.04

Table 6. Total CPU time in seconds for 6 iterations.

size, N=

Cray-YMP

32-node CM5

Co4-node CM5

128-node CM5

288(=24x12)

86.0

1416,0

1300.0

1202.0

1152(=48x24)

412.0

1634.0

1396.0
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ABSTRACT

PERFORMANCE ANALYSIS OF THREE DIMENSIONAL

INTEGRAL EQUATION COMPUTATIONS ON

A MASSIVELY PARALLEL COMPUTER

Student: Terry G. Logan_ Department: Mathematics
Degree: Master of Science_ August 1994

The purpose of this study is to investigate the performance of the integral

equation computations using numerical sourcefield-pmlel method in a massively

parallel processing (MPP) environment. A comparative study of computational

performanceof the MPP CM-5 computer and conventionalCray-YMP supercom-

puter for a three-dimensionalflow problem is made. A serial FORTRAN code is

converted into a parallel CM-FORTRAN code. Someperformance results are ob-

tained on CM-5 with 32, 64, 128 nodes along with those on Cray-YMP with a

single processor. The comparison of the performance indicates that the parallel

CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code

for somecases.


